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Equilibrium distribution of gas molecules adsorbed on an active surface
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We evaluate the exact equilibrium distribution of gas molecules adsorbed on an active surface with an
infinite number of attachment sites. Our result is a Poisson distribution havingXrea® Ps /P, with u the
mean gas densityP the sticking probability,P, the evaporation probability in a time interva] and P
Smoluchowski’s exit probability in time intervaifor the surface in question. We then solve for the case of a
finite number of attachment sites using the mean field approximation, recovering the Langmuir isotherm in this
case.

PACS numbegps): 05.70—a, 05.20-y

I. INTRODUCTION For most practical cas@¢andV are both very large, but the

ratio of N/V is finite so that the mean is finite. In this limit,
One of the models aimed at explaining the collapse of thehe binomial distribution of E(2) reduces to the Poissonian
wave function[1] predicts that the wave function of every form
system collapses to an eigenstate of the Hamiltonian in the
energy basis in a time which depends on the energy spread of
the wave packet. For a system including the measuring ap-
paratus, relevant sources of energy fluctuations are thermal
energy fluctuations and enerdynas$ fluctuations coming The interpretation of this equation is the following: If we
from fluctuations in the number of surface adsorbed molfocus on a small subvolume inside a much larger volume
ecules. Our aim in this paper is to derive formulas for theV, then the frequency with which different numbers of par-
equilibrium distribution of adsorbed molecules on an activeticles will be observed in the smaller volume will follow a
surfaceS, from which the root mean square mass fluctuationPoisson distribution. It should be noted that in addition to the
can be calculated. Our results could also be relevant in oth@ssumption of all positions in the volume having egaal
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Uim= n!
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contexts, e.g., in surface catalysis.

priori probabilities of occupancy, we also assume that the

Since our work is based largely on the classical colloidalimotions of individual particles are mutually independent. In

statistics problenj2] solved by Smoluchowski, we will re-

the surface adsorption generalization discussed in Sec. II,

view his result first. Consider a gas chamber of voluvhe this is the case for an infinite number of attachment sites, but
which hasN gas molecules distributed randomly inside. As-would not be the case for a finite number of attachment sites.

suming uniform occupancy, the probability that a single mol-

ecule is found inside a small subvolumes v/V, and that of
not being found inside isM(—v)/V. Thus the probability
U(n) of somen particles being found inside is given by
the binomial distribution

o=l T3

The mean number of particlgs found inside the small vol-
umeuw is just the mean of this binomial distributidfv/V. In
terms of u, then, the distributiotd (n) becomes
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Let us now defineP to be the probability that a particle
somewhere inside the small volumewill have emerged
from it during the time interval. The “probability afteref-
fect factor” P will depend on physical parameters such as
the velocity distribution and mean free path of the particles,
as well as on the geometry of the surface boundary. In terms
of P, the probability that, starting with an initial situation of
n molecules inside, i of them escape in time is

A(n,i)=|. |P'(1-P)"". (4)

n
i

Let E; denote the probability of the volume capturingi
particles during timer. E; clearly is independent of the num-
ber of molecules already inside. However, under equilibrium
conditions, thea priori probabilities for an entrance and exit
must be equal. For eaahthere is a contribution to the exit
probability; summing over all of them and equatingEop,

Jve obtain

Ei=2> U(MA(n,i). (5)
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Inserting the expressions for(n) andA(n,i) from Egs.(3) . .
and (4), we obtain 2, U(nB(n,i)=2 U n)( ) PL(1-P)"". (12

* e Hyh ) ) .

Ei=2 M (?) Pi(1—p)- Equating these two probabilities, we have
n=i
. n\ . .
M(,LLP)I e nfi(l_P)nfi O-(IHU’PPS)ZHE}i U(n) I)Ple(l_Pe)n I- (13)
= 2 —
hei (n—i)!

Our task now is to determine the equilibrium distribution
=a(i,uP), (6)  U(n) from this equation. We start with the ansatz thin)
is a Poisson distributionr(n,X), with a meanX which is to
where from here on we denote a Poisson distribution witthe determined:

meanX by o(n,X), with
e—Xxn

*Xxn U(n):U(nIX):
(7

- o (14
a(n, =

n!
Substituting Eq(7) into Eqg. (13), and using the sum evalu-

ated in Eq.(6), we obtain the condition
Il. ADSORPTION OF GAS MOLECULES

To make our analysis intuitively clear, let us draw an o(i,uPPg) =0 (i, XPe), (15

imaginary surfacé just outside the active surface a®@alhe
following notations will be used(i) E; is the probability for
i molecules to enter the volume enclosed Ibin the time PP
. . C. . M s
interval 7. Since this is the same as in the case where the =5

surface S inside is absent, this probability is just as in e

which is satisfied when

(16)

Eq. (6): Equations(14) and (16) are our results for the equilibrium
E.=o(i,uP) ) distribution of adsorbed molecules. We note that, as intu-
: M) itively expected, the mean number of adsorbed molecules
increases with increasing gas dengityand increasing stick-
ing probability Pg, but decreases with increasing evapora-
tion probability P .

As a check on our reasoning, let us calculate the transition
probability W(n,m) for m particles to be stuck to the surface
at time T+ 7, whenn particles were stuck to the surface at
time T, and then check tha®v(n,m) and U(n) have the
requisite Markoff property. The transition probability is
given by

(i) U(n) is the probability to observe molecules sticking to
S (iii) Py is the probability of a molecule to stick ®after
crossingl. (iv) P, is the probability for a molecule that is
stuck toSto evaporate off in a time interval (v) B(n,i) is
the probability that starting with an initial situation with
particles stuck tds, iof them evaporate in time.

By Smoluchowski’'s reasoning, leading to E¢) above,
we have

AL i n—i
e i)(Pe)(l‘Pe) ' ® winm= 3 W ()Wy(y), a7
X+y=m

At equilibrium, the detailed balance condition holds. This is
just the condition that the probability theparticles stick in

a time intervalr is equal to the probability that particles
evaporate in the same time intervalThe probability fori

where W{")(x) is the probability thatx particles remain at
time T+ 7 when initially there weren at timeT,

. ; n

molecules to stick t&is \N(l”)(x)= < (1—Po)*PD %, (18)
> E ( ) PL1-PyI . (100 and W,(y) is the probability fory additional particles to

1= adhere to the surface in timeas given by Eq(11):
g:érg?niyoluchowski's expression f&; from Eq. (8), this W, (y)=o(y, uPPy). (19
o The Markoff property requires that
PP P(1—Pg] "
e—uP(" L _i)f)] =a(i,uPPy).
=i (j—i)! U(m)=_>, U(n)W(n,m), (20)
(11 n

The other part of the detailed balance condition, the probwith U(m) the equilibrium distribution of Eq$14) and(16).
ability that out ofn molecules orSS, i of them evaporate in Evaluating the sum on the right-hand side of E2Q), we
time interval 7, is find, as required, that
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_ m\ uPP
2 [ 2 UMW) | Wy(y) m=(1——) s, (24)
x+y=m \ n M Pe
= 2 o(xX(1=P)a(y,uPPy) with solution
e PP,/P
— M s/Fe
=o(MX(1-Pg)+ uPP)=c(m,X)=U(m). szPs' (25
21) B

Thus the mean fractiom/M of total available sites occupied
has the form of the Langmuir isotherf8].
The mean field approximation is valid as long as the mean
Let us now proceed to calculate the equilibrium distribu-number of vacant sitesl —m is much larger than the width
tion of the number of molecules attachedSovhereShas a  \/m of the distribution of adsorbed molecules,

finite (although very largenumber of attachment sited.
m m 1/2
M—m:M(l—M)>ﬁ:N (m) 29

IIl. FINITE NUMBER OF ATTACHMENT
SITES: MEAN FIELD APPROACH

Clearly, our discussion of Sec. Il breaks down, since the
sticking probability is no longer a constant, but depends on
the numbem of molecules already attached $1n the fol-
lowing discussion, let us use to denote the probability for  Close to saturation, whem/M ~ 1, substituting Eq(25) into
a molecule to stick tc5 if no site is occupied, and let us Eq. (26) gives the condition

denote the mean number of occupied sitestbyThen the

mean sticking probability is just PP
1+ 5w, 27
B = PM
Ps= Ps( 1- _) ) (22 . . -
M which whenX= uPP/P.>M simplifies to

and the corresponding distribution of stuck molecules is X<M32 (28)
a(n,X), with
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Since the mean of this distribution fa=X, we obtain the
mean field consistency condition
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