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Equilibrium distribution of gas molecules adsorbed on an active surface
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We evaluate the exact equilibrium distribution of gas molecules adsorbed on an active surface with an
infinite number of attachment sites. Our result is a Poisson distribution having meanX5mPPs /Pe , with m the
mean gas density,Ps the sticking probability,Pe the evaporation probability in a time intervalt, and P
Smoluchowski’s exit probability in time intervalt for the surface in question. We then solve for the case of a
finite number of attachment sites using the mean field approximation, recovering the Langmuir isotherm in this
case.

PACS number~s!: 05.70.2a, 05.20.2y
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I. INTRODUCTION

One of the models aimed at explaining the collapse of
wave function@1# predicts that the wave function of ever
system collapses to an eigenstate of the Hamiltonian in
energy basis in a time which depends on the energy sprea
the wave packet. For a system including the measuring
paratus, relevant sources of energy fluctuations are the
energy fluctuations and energy~mass! fluctuations coming
from fluctuations in the number of surface adsorbed m
ecules. Our aim in this paper is to derive formulas for t
equilibrium distribution of adsorbed molecules on an act
surfaceS, from which the root mean square mass fluctuat
can be calculated. Our results could also be relevant in o
contexts, e.g., in surface catalysis.

Since our work is based largely on the classical colloi
statistics problem@2# solved by Smoluchowski, we will re
view his result first. Consider a gas chamber of volumeV
which hasN gas molecules distributed randomly inside. A
suming uniform occupancy, the probability that a single m
ecule is found inside a small subvolumev is v/V, and that of
not being found inside is (V2v)/V. Thus the probability
U(n) of somen particles being found insidev is given by
the binomial distribution

U~n!5S N
n D S v

VD nS 12
v
VD N2n

. ~1!

The mean number of particlesm found inside the small vol-
umev is just the mean of this binomial distributionNv/V. In
terms ofm, then, the distributionU(n) becomes

U~n!5S N
n D S m

ND nS 12
m

ND N2n

. ~2!
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For most practical casesN andV are both very large, but the
ratio of N/V is finite so that the meanm is finite. In this limit,
the binomial distribution of Eq.~2! reduces to the Poissonia
form

U~n!5
e2mmn

n!
. ~3!

The interpretation of this equation is the following: If w
focus on a small subvolumev inside a much larger volume
V, then the frequency with which different numbers of pa
ticles will be observed in the smaller volume will follow
Poisson distribution. It should be noted that in addition to
assumption of all positions in the volume having equaa
priori probabilities of occupancy, we also assume that
motions of individual particles are mutually independent.
the surface adsorption generalization discussed in Sec
this is the case for an infinite number of attachment sites,
would not be the case for a finite number of attachment si

Let us now defineP to be the probability that a particle
somewhere inside the small volumev will have emerged
from it during the time intervalt. The ‘‘probability afteref-
fect factor’’ P will depend on physical parameters such
the velocity distribution and mean free path of the particl
as well as on the geometry of the surface boundary. In te
of P, the probability that, starting with an initial situation o
n molecules insidev, i of them escape in timet is

A~n,i !5S n
i D Pi~12P!n2 i . ~4!

Let Ei denote the probability of the volumev capturingi
particles during timet. Ei clearly is independent of the num
ber of molecules already inside. However, under equilibri
conditions, thea priori probabilities for an entrance and ex
must be equal. For eachn there is a contribution to the exi
probability; summing over all of them and equating toEi ,
we obtain

Ei5(
n5 i

`

U~n!A~n,i !. ~5!
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Inserting the expressions forU(n) andA(n,i ) from Eqs.~3!
and ~4!, we obtain

Ei5(
n5 i

`
e2mmn

n! S n
i D Pi~12P!n2 i

5
e2m~mP! i

i ! (
n5 i

`
mn2 i~12P!n2 i

~n2 i !!

5s~ i ,mP!, ~6!

where from here on we denote a Poisson distribution w
meanX by s(n,X), with

s~n,X!5
e2XXn

n!
. ~7!

II. ADSORPTION OF GAS MOLECULES

To make our analysis intuitively clear, let us draw
imaginary surfaceI just outside the active surface areaS. The
following notations will be used:~i! Ei is the probability for
i molecules to enter the volume enclosed byI in the time
interval t. Since this is the same as in the case where
surface S inside is absent, this probability is just as
Eq. ~6!:

Ei5s~ i ,mP!. ~8!

~ii ! U(n) is the probability to observen molecules sticking to
S. ~iii ! Ps is the probability of a molecule to stick toS after
crossingI. ~iv! Pe is the probability for a molecule that i
stuck toS to evaporate off in a time intervalt. ~v! B(n,i ) is
the probability that starting with an initial situation withn
particles stuck toS, i of them evaporate in timet.

By Smoluchowski’s reasoning, leading to Eq.~4! above,
we have

B~n,i !5S n
i D ~Pe!

i~12Pe!
n2 i . ~9!

At equilibrium, the detailed balance condition holds. This
just the condition that the probability thati particles stick in
a time intervalt is equal to the probability thati particles
evaporate in the same time intervalt. The probability fori
molecules to stick toS is

(
j > i

Ej S j
i D Ps

i ~12Ps!
j 2 i . ~10!

Using Smoluchowski’s expression forEj from Eq. ~8!, this
becomes

e2mP
~mPPs!

i

i ! (
j > i

@mP~12Ps!#
j 2 i

~ j 2 i !!
5s~ i ,mPPs!.

~11!

The other part of the detailed balance condition, the pr
ability that out ofn molecules onS, i of them evaporate in
time intervalt, is
h

e

-

(
n> i

U~n!B~n,i !5(
n> i

U~n!S n
i D Pe

i ~12Pe!
n2 i . ~12!

Equating these two probabilities, we have

s~ i ,mPPs!5(
n> i

U~n!S n
i D Pe

i ~12Pe!
n2 i . ~13!

Our task now is to determine the equilibrium distributio
U(n) from this equation. We start with the ansatz thatU(n)
is a Poisson distributions(n,X), with a meanX which is to
be determined:

U~n!5s~n,X!5
e2XXn

n!
. ~14!

Substituting Eq.~7! into Eq. ~13!, and using the sum evalu
ated in Eq.~6!, we obtain the condition

s~ i ,mPPs!5s~ i ,XPe!, ~15!

which is satisfied when

X5
mPPs

Pe
. ~16!

Equations~14! and ~16! are our results for the equilibrium
distribution of adsorbed molecules. We note that, as in
itively expected, the mean number of adsorbed molecu
increases with increasing gas densitym and increasing stick-
ing probability Ps , but decreases with increasing evapo
tion probabilityPe .

As a check on our reasoning, let us calculate the transi
probabilityW(n,m) for m particles to be stuck to the surfac
at timeT1t, whenn particles were stuck to the surface
time T, and then check thatW(n,m) and U(n) have the
requisite Markoff property. The transition probability
given by

W~n,m!5 (
x1y5m

W1
~n!~x!W2~y!, ~17!

where W1
(n)(x) is the probability thatx particles remain at

time T1t when initially there weren at timeT,

W1
~n!~x!5S n

xD ~12Pe!
xPe

n2x , ~18!

and W2(y) is the probability fory additional particles to
adhere to the surface in timet as given by Eq.~11!:

W2~y!5s~y,mPPs!. ~19!

The Markoff property requires that

U~m!5(
n

U~n!W~n,m!, ~20!

with U(m) the equilibrium distribution of Eqs.~14! and~16!.
Evaluating the sum on the right-hand side of Eq.~20!, we
find, as required, that
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(
x1y5m

S (
n

U~n!W1
~n!~x! DW2~y!

5 (
x1y5m

s„x,X~12Pe!…s~y,mPPs!

5s„m,X~12Pe!1mPPs…5s~m,X!5U~m!.

~21!

III. FINITE NUMBER OF ATTACHMENT
SITES: MEAN FIELD APPROACH

Let us now proceed to calculate the equilibrium distrib
tion of the number of molecules attached toS, whereShas a
finite ~although very large! number of attachment sitesM.
Clearly, our discussion of Sec. II breaks down, since
sticking probability is no longer a constant, but depends
the numbern of molecules already attached toS. In the fol-
lowing discussion, let us usePs to denote the probability for
a molecule to stick toS if no site is occupied, and let u
denote the mean number of occupied sites bym̄. Then the
mean sticking probability is just

P̄s5PsS 12
m̄

M D , ~22!

and the corresponding distribution of stuck molecules
s(n,X̄), with

X̄5
mPP̄s

Pe
. ~23!

Since the mean of this distribution ism̄5X̄, we obtain the
mean field consistency condition
.

-

e
n

s

m̄5S 12
m̄

M D mPPs

Pe
, ~24!

with solution

m̄5
mPPs /Pe

S 11
mPPs

PeM
D . ~25!

Thus the mean fractionm̄/M of total available sites occupie
has the form of the Langmuir isotherm@3#.

The mean field approximation is valid as long as the me
number of vacant sitesM2m̄ is much larger than the width
Am̄ of the distribution of adsorbed molecules,

M2m̄5M S 12
m̄

M D@Am̄5AM S m̄

M D 1/2

. ~26!

Close to saturation, whenm̄/M'1, substituting Eq.~25! into
Eq. ~26! gives the condition

11
mPPs

PeM
!AM , ~27!

which whenX5mPPs /Pe@M simplifies to

X!M3/2. ~28!
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